
Treating Wheat as a First Class Citizen Shawn P. Conley, J Gaska, and A Roth State Soybean and Small Grains Specialist University of Wisconsin, Madison

Geographical Comparison

WI Winter Wheat Program: The year in review

Brand	Entry	Yield (bu/A)
PIP	735	109
DuPont Pioneer	25R46	108
Legacy	LXW 1480	106
PIP	737	106
PIP	738	106
PIP	741	106
Legacy	LXW 1485	105
PIP	736	105
Syngenta	SY 483	105
Diener	XW 1401	104
PIP	721	104
PIP	766	104
AgriMAXX	413	103
DuPont Pioneer	25R40	103
Dyna-Gro	9223	103
Legacy	LW 1375	103
PIP	734	103
PIP	760	103
PIP	792	103
Pro Seed Genetics	PRO 320A	103

Performance Tests

A3868

Wisconsin Winter Wheat Performance Tests

2014

Shawn Conley, Adam Roth, John Gaska and Damon Smith Department of Agronomy College of Agricultural and Life Science University of Wisconsin-Madison www.coolbean.info

The Wisconsin dats and barley performance trials are conducted each year with the producer's needs in mind. Trials include released varieties, experimental lines from Wisconsin and neighboring states, and lines from private seed companies. The primary objective of these trials is to obtain data on how varieties perform in different locations and years. Growers use these data to help choose the best varieties to plant, and breeders use performance data to determine whether or not to release a new variety.

A3874

Wisconsin oats and barley performance tests—2015

John Mochon and Shawn Conley

New varieties developed and released in Wisconsin are entered in the Wisconsin Certification Program. These varieties have demonstrated superior production qualities. In addition, highly rated varieties from other states may be recommended and/ or certified in the state. As new varieties are released to the public, older varieties are released to the public, older varieties from the certified list and eventually dropped from the certified list as seed production declines.

Occasionally, varieties are certified without being recommended to Wisconsin growers. These varieties may include commercial varieties developed by private seed companies or varieties where there is a substantial market for Wisconsin-produced seed. Thus, in Wisconsin, recommendation and certification do not mean the same thing. Recommended varieties are those with superior in-state production performance records, while certification provides the assurance of seed purity and seed quality.

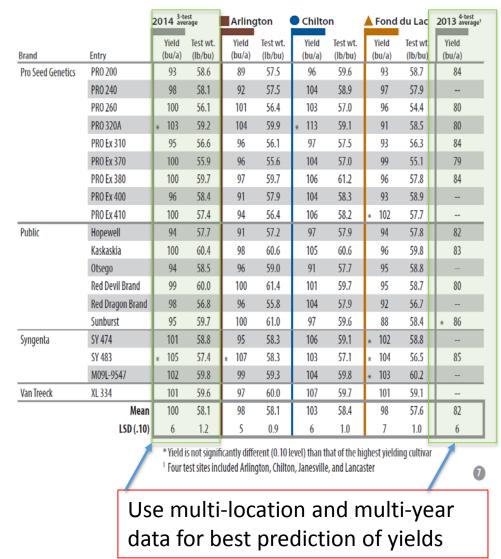
Variety selection

Factors to consider when selecting oat and barley varieties include grain yield, maturity, straw strength (or resistance to lodging), and disease resistance. Disease ratings are performed by the University of Wisconsin-Madison Department of Agronomy. Barley growers should consider whether a variety is acceptable for malting. Several varieties are also evaluated for forage yield (tables 4 and 7).

How the entries were tested

Varieties included in the trial are selected based upon current demand, availability, and adaptation to Wiscosnin's climate. Most of these entries are commercially available. Several commercial and public cultivars were included for comparison.

Tests were conducted at seven locations using conventional tillage practices. All plots were planted at a seeding rate of 2.5–3.0 bushels per acre. Agronomic practices at all locations are listed in table 1. Tests were conducted using four randomized replications.

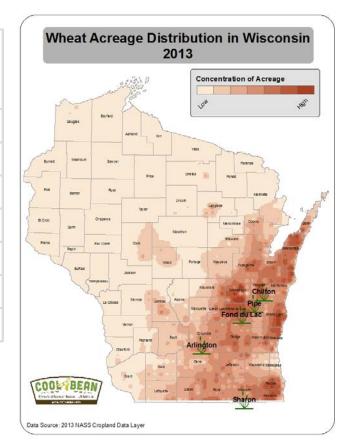

Table 1. Location and agronomics of small grain variety trials in Wisconsin

Location	Cooperators	Soll type	Row spacing (inches)	Average nitrogen applied (lb/a)	Planting date	Harvest date
Arlington	J. Albertson, P. LeMahieu	silt loam	6.0	30*	April 23	Aug. 8
Chilton	Kolbe Seeds, M. Glewen	red clay	12.0		May 23	
Lancaster	A. Crooks, B. Meyers	silt loam	7.5	barley: 5, oats: 8	April 22	Aug. 6
Madison	J. Mochon, T. Wright	silt loam	6.0	30*	May 6	
Marshfield	J. Cavadini	silt loam	6.0	barley: 50, oats: 40	May 19	Aug. 21
Spooner	P. Holman	sandy loam	7.3	74	May 7	Aug. 25
Sturgeon Bay	M. Stasiak	silt loam	12.0	82	May 27	Aug. 27

* Nitrogen credited from previous alfalfa or soybean.

Data Tables

- Companies, varieties sorted alphabetically
- Mean and LSD shown at bottom
- Stars (*) indicate that variety is not significantly different than the highest yielding variety in the trial.
- Additional winter survival and disease data taken when available



Winter Wheat Variety by Seeding Rate Interactions (13-14 growing seasons)

Seeding rate (million seeds a ⁻¹)	Grain yield (bu a⁻¹)
1.25	88.8
1.50	88.5
1.75	90.8
2.00	90.5
2.25	91.4
2.50	90.8
	LSD (0.10) 1.8

- Significant yield increase from 1.50 to 1.75 million seeds per acre
- No variety by seeding rate interaction
 - Sunburst, Pro260, P25R40

Winter Wheat Seeding Rate Recommendations Continued

				_		
		in)	w Width (i	Ro	Seeds/sq ft	Seeds/acre
		7.5	7	6		Million
		row	ds per foot	See		
		6	5	5	9.2	0.4
		7	7	6	11.5	0.5
		9	8	7	13.8	0.6
		10	9	8	16.1	0.7
		11	11	9	18.4	0.8
for Sept 1 to Sept 15	Seeding Rate	13	12	10	20.7	0.9
		14	13	11	23.0	1.0
		16	15	13	25.3	1.1
		17	16	14	27.5	1.2
		19	17	15	29.8	1.3
for Sept 15 to Oct. 1	Seeding Rate	20	19	16	32.1	1.4
		22	20	17	34.4	1.5
		23	21	18	36.7	1.6
		24	23	20	39.0	1.7
		26	24	21	41.3	1.8
for Oct. 1 to Oct 10	Seeding Rate	27	25	22	43.6	1.9
		29	27	23	45.9	2.0
		30	28	24	48.2	2.1
c 1/11 1.0		32	29	25	50.5	2.2
Seeds/lb 1.0		33	31	26	52.8	2.3
10000 100		34	32	28	55.1	2.4
11000 91		36	33	29	57.4	2.5

- Decreased TW:TKW
 - \uparrow seeding rate
 - $-\downarrow$ seeding vigor
- Delayed planting
 - \uparrow lack of tillers

			Seeds per	r acre (x i	1 million))	
Seeds/lb	1.0	1.2	1.4	1.6	1.8	2.0	2.2
			Poun	ds of see	l/acre		
10000	100	120	140	160	180	200	220
11000	91	109	127	145	164	182	200
12000	83	100	117	133	150	167	183
13000	77	92	108	123	138	154	169
14000	71	86	100	114	129	143	157
15000	67	80	93	107	120	133	147
16000	63	75	88	100	113	125	138
17000	59	71	82	94	106	118	129

*This table is based on 100% germination. Adjust your seeding rate by the % germ printed on your bag

Status of Late Planted Wheat

*Remember that winter wheat will vernalize once the radicle emerges

#1 Wheat Problem in the Midwest

Sub-crown internodes

Winterkill

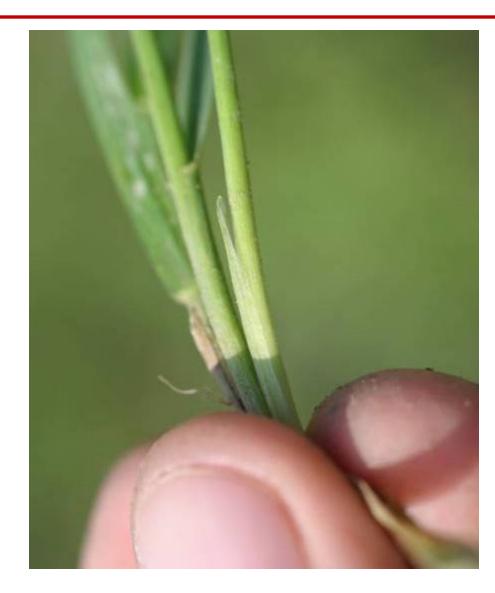
N Demand for Winter Wheat

- N fertilizer has two important functions:
 - Manipulate population
 - o Effective population is tillers, not population
 - Supply nutritional needs of crop for production of protein (streamer bars)
- Wheat following soybean vs. corn
 - Residual N following drought conditions
 - Validation of PPNT

What is the Right Time for N?

- Early spring if the crop looks thin
 - < 70 tillers/ft²
- If the crop looks good, wait until near jointing
 - Increase yield
 - Increase fertilizer efficiency
 - Avoid growth that is too lush

o Disease, lodging, water stress


Allow better diagnosis of the right amount of N

Tiller ID and Contribution to Yield

- Each tiller has its own sheath (prophyll)
- Be aware of 2° or 3° tillers
- Tillers > 5th leaf will not produce heads and therefore, do not need to be counted....

Effect of Spring N on Wheat Yield Components

Seeding	% WK	N rate	Grain	Lodging	1000	Tillers	Heads
rate			Yield	(1-5)	КМТ	sq ft	SM
1.75	0		87.8	2.1	41.3	182	710
1.50	15		79.6	2.1	41.5	150	640
1.25	30		79.4	1.6	40.9	112	576
1.00	45		74.0	1.5	40.5	95	623
0.75	60		73.4	1.3	41.0	95	533
LSD (0.10)			5.9	0.3	NS	16.9	60.8
		0	68.4	1.0	42.4	124	572
		30	77.2	1.3	42.4	127	630
		60	82.0	1.7	40.6	128	580
		90	82.1	2.2	40.3	135	679
		120	84.7	2.3	39.4	120	622
LSD (0.10)			3.1	0.2	0.8	NS	53.0

N Recommendations for Wheat

Nitrogen:Wheat price ratio 0.05 0.075 0.1 0.125 PPNT Soil Previous total lb N/a to apply^a $(Ib NO_3 - N/a)$ group crop Loamy 55 75 70 60 Corn $< 50^{\circ}$ or no PPNT 65-----85 55-----80 50-----70 40 ----- 65 45 40 35 30 51 to 100 35-----55 30-----50 25-----40 20 ----- 35 0 0 0 0 > 100 0-----0 0-----0 0----0 0 ----- 0 Soybean, 55 50 45 40 All small grain 45-----65 40-----60 35-----50 35 ----- 45 Sandy 105 100 90 85 All ____d 95-----115 95-----110 80-----100 70 ----- 95

Table 6.2. Suggested nitrogen (N) application rates for wheat at different nitrogen:wheat price ratios.

^a On loamy soils with < 2% organic matter, add 30 lb N/a to all rates. On soils with more than 10% organic matter, reduce rates by 30 lb N/a. Reduce N rates by 10 lb N/a for spring wheat on all soils. No N is required on organic soils. Manure N credits must be subtracted from these values.

^b If wheat follows a forage legume or leguminous vegetable, use the MRTN rate for wheat following corn with PPNT < 50 and take the legume credit.

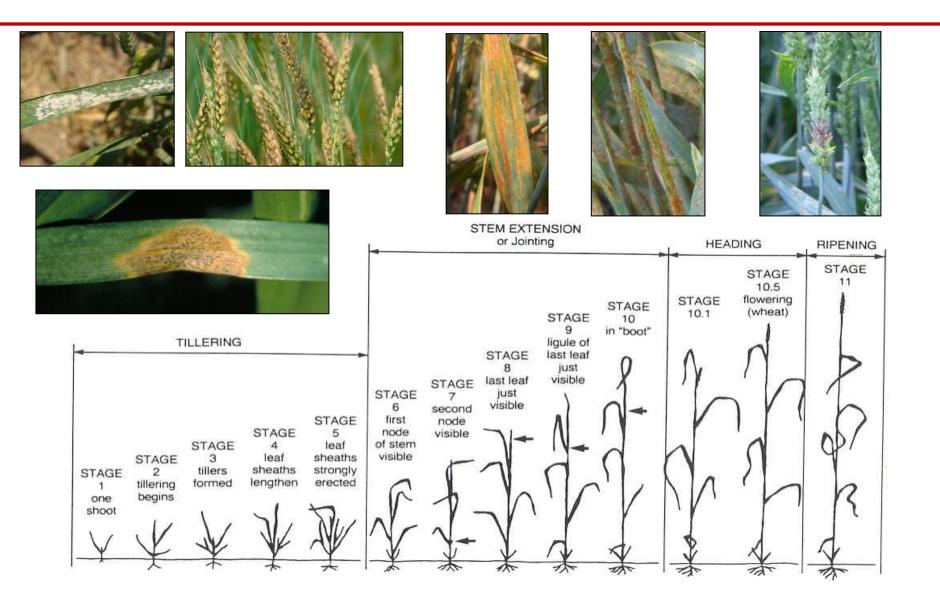
^c Previous crop soybean or small grain: If a PPNT is taken and the PPNT is < 50 lb N/a, use the top end of the profitable range; if the PPNT is 51 to 100 lb N/a, use the bottom end of the profitable range; if the PPNT is > 100 lb/a, no additional N is needed. Do not take a soybean legume credit.

^d PPNT is not recommended on group S (sand and loamy sand) soils.

Laboski et al. 2013; A2809

Winter Wheat P, K, and S Removal

	Pounds per unit						
Сгор	Unit	N	P ₂ O ₅	K ₂ O	S		
Wheat grain	bu	1.5	0.6	0.34	0.1		
Wheat straw	ton	14	3.3	24	2.8		
Total removal for 100bu + 2T		178	66.6	82	15.6		



Disease Management

Integrated Management for Wheat Diseases

- Commit to scouting the field
- Know the disease reaction for the wheat variety planted
- Estimate crop yield potential
- Know the disease(s)
- Scout fields
- Determine disease levels
- Determine the potential number of applications
- Select fungicide
- Understand the risks

Powdery Mildew

• (Blumeria graminis)

- Infection favored under cool (50-71°F), wet weather and high relative humidity
- Management includes: resistance, fungicide seed treatments, foliar fungicides, balanced fertility

Septoria Leaf Blotch

• (Septoria tritici)

- Infection favored by cool conditions (59-68°F), leaf wetness (minimum of 6 hours)
- Management includes: certified disease-free seed and seed fungicides, rotation, foliar fungicides

Stripe, Leaf, and Stem Rust

- Conditions vary for infection
 - Temperature:
 - o Stripe < Leaf < Stem</pre>
 - All require leaf wetness and/or high humidity
- Management focuses on resistance, foliar fungicides, and balanced fertility

Fusarium Head Scab (Blight)

• (Fusarium graminearum)

- Infection favored by warm temperatures (65-85°F) and prolonged periods of rain (dew) and high relative humidity
- Management includes rotation, fungicide sprays

Glume Blotch

(Stagonospora nodorum)

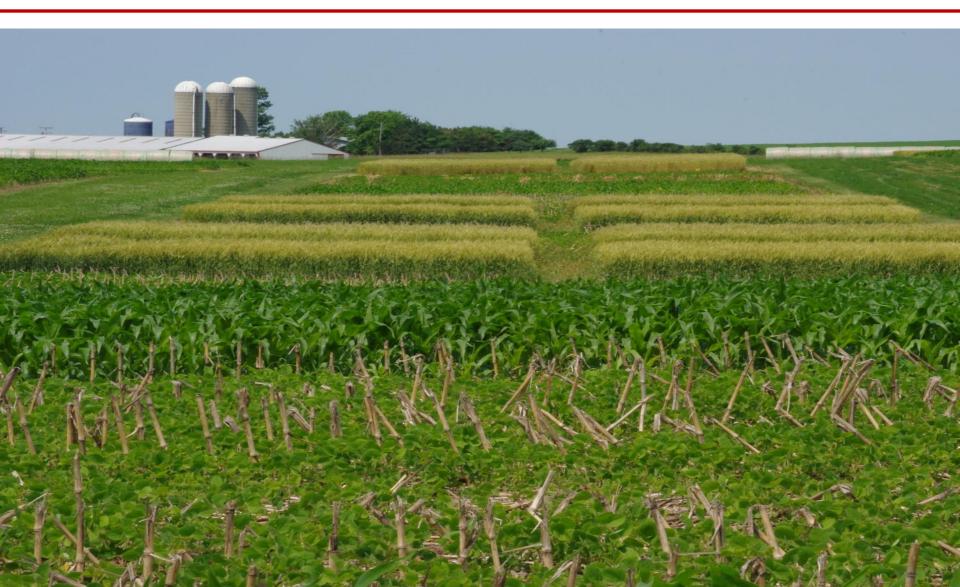
- Infection favored by warmer temperatures (68-81°F) and leaf wetness from 6 to 16 hours
- Management includes certified disease-free seed and seed fungicides, rotation, foliar fungicides

Wheat Response to Fungicides in 12/13

	Leaf Blotch Severity	Powdery Mildew	Powdery Mildew	FHB Incidence	FHB Severity	DON content	
Treatment and Rate/Acre (Crop Growth Stage at Application) ^z	(%)	Incidence (%)	Severity (%)	(%)	(%)	(ppm)	Yield (bu/a)
Non-treated control							
	39.0 a ^y	6.3	5.0	2.3	7.5	0.6 a ^y	79.2 f ^y
Aproach 2.08SC 3 fl.oz. (Feekes 5)	26.2 -	1.2	2.0	2.2	7.5	0.5.	01 5 - (
Stratego 500SC 2 fl.oz. (Feekes 5)	26.3 a	1.3	3.8	3.3	7.5	0.5 a	81.5 ef
Stratego 5005C 2 11.02. (Peekes 5)	25.3 b	5.0	7.5	3.3	8.8	0.6 a	84.5 df
Prosaro 421SC 5 fl.oz. (Feekes 8)	23.30	5.0	7.5	5.5	0.0	0.0 a	04.J UI
	22.5 bd	0.0	0.0	2.0	7.5	0.5 a	87.3 cde
Stratego 500 SC 4 fl.oz. (Feekes 8)							
	21.0 bc	0.0	0.0	1.8	6.9	0.5 a	89.0 bcd
Headline 2.08SC 6 fl.oz. (Feekes 8)							
	19.0 bc	0.0	0.0	2.8	5.3	0.6 a	92.4 ac
Prosaro 421SC 6.5 fl.oz. (Feekes 10.5.1)							
	18.8 bc	0.0	0.0	0.3	0.3	0.2 c	88.3 bcde
Aproach 2.08SC 6 fl.oz. (Feekes 8)							
	17.8 bc	0.3	0.3	2.6	15.3	0.5 ab	91.9 ac
Prosaro 421SC 6.5 fl.oz. (Feekes 8)							
Headline 2.08SC 6 fl.oz. (Feekes 8)	17.8 bc	0.0	0.0	3.5	7.5	0.5 a	94.9 ab
Prosaro 421SC 6.5 fl.oz. (10.5.1)							
103810 42130 0.3 11.02. (10.3.1)	13.3 cd	0.0	0.0	0.5	2.0	0.2 h -	07.0 -
Stratego 500SC 2 fl.oz. (Feekes 5)	13.3 00	0.0	0.0	0.5	2.8	0.3 bc	97.0 a
Prosaro 421SC 6.5 fl.oz. (Feekes 10.5.1)							
	13.0 cd	0.0	0.0	1.0	3.0	0.2 c	94.6 ab
Priaxor 4.17SC 6 fl.oz. (Feekes 8)	15.0 00	0.0	0.0	1.0	5.0	0.20	54.005
Prosaro 421SC 6.5 fl.oz. (Feekes 10.5.1)							
	11.8 c	0.0	0.0	0.5	0.5	0.2 c	91.3 ad
LSD (α=0.05)	9.9	ns ^x	ns	ns	ns	0.2	7.2

Wheat Response to Fungicides in 13/14

Treatment and Rate/Acre (Crop Growth Stage at	Leaf Blotch Severity Lower Canopy	Leaf Blotch Severity Flag Leaf	FHB	DON content	Test weight	Yield
Application) ^z	(%)	(%)	Index ^y	(ppm)	(lbs/bu)	(bu/a)
Headline 2.08SC 6.0 fl oz (Feekes 5)	30.2	3.3	0.4	3.7 ab ^x	60.7	99.0 e ^x
Non-treated check	28.8	2.5	0.3	3.3 bd	61.0	101.3 de
Stratego YLD 500SC 5.0 fl oz (Feekes 8)	20.0	0.0	0.1	4.1 a	60.4	102.5 de
Headline 2.08SC 6.0 fl oz (Feekes 8)	23.8	1.3	0.6	3.5 bc	61.2	102.5 ce
Aproach 2.08SC 6.0 fl oz (Feekes 8)	31.3	1.9	0.3	3.4 bd	60.4	102.5 ce
Prosaro 421SC 6.5 fl oz (Feekes 8)	20.0	0.0	1.0	3.4 bd	61.5	102.8 ce
Quilt Xcel 2.2SE 10.5 fl oz (Feekes 8)	22.5	2.5	0.3	3.5 bc	61.4	103.5 bcd
Stratego YLD 500SC 5.0 fl oz (Feekes 8)						
Prosaro 421SC 6.5 fl oz (Feekes 10.5.1)	16.7	0.2	0.8	2.8 de	61.4	104.0 acd
Stratego YLD 500SC 2.0 fl oz (Feekes 5)						
Prosaro 421SC 6.5 fl oz (Feekes 10.5.1)	20.0	0.6	0.3	2.6 ef	61.6	105.3 acd
Priaxor 4.17SC 2.0 fl oz (Feekes 5) Caramba 90EC 13.5 fl oz (Feekes 10.5.1)	22.5	0.0	0.3	2.0 f	61.1	106.4 ac
Quilt Xcel 2.2SE 8.0 fl oz (Feekes 8) Prosaro 421SC 6.5 fl oz (Feekes 10.5.1)	13.3	0.2	0.1	2.7 e	61.4	107.1 ab
Headline 2.08SC 6.0 fl oz (Feekes 8) Prosaro 421SC 6.5 fl oz (Feekes 10.5.1)	19.6	0.0	0.0	3.0 cde	61.8	107.2 ab
Prosaro 421SC 6.5 fl oz (Feekes 10.5.1)	21.8	0.0	0.1	2.4 ef	61.2	107.3 ab
Aproach 2.08SC 6.5 fl oz (Feekes 8)						
Prosaro 421SC 6.5 fl oz (Feekes 10.5.1)	13.8	0.6	0.3	2.5 ef	61.2	107.9 a
LSD (α=0.05)	ns ^w	ns^w	ns ^w	0.6	ns^w	4.2


^zInduce 90% SL (Non-ionic surfactant) at 0.125% v/v was added to all fungicide treatments.

^yFHB index = (Fusarium head blight incidence x Fusarium head blight severity)/100

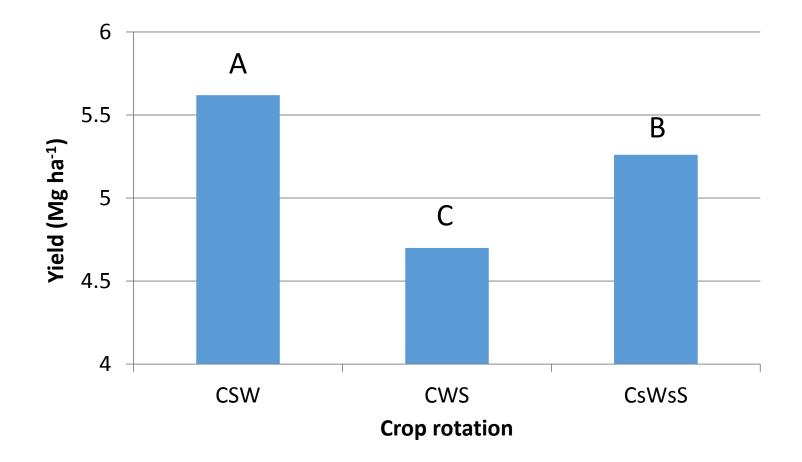
^{*}Means followed by the same letter are not significantly different based on Fisher's Least Significant Difference (LSD; α =0.05)

^wns=not significant

Impact of Crop Rotation and Nitrogen on Wheat Yield

Materials and Methods

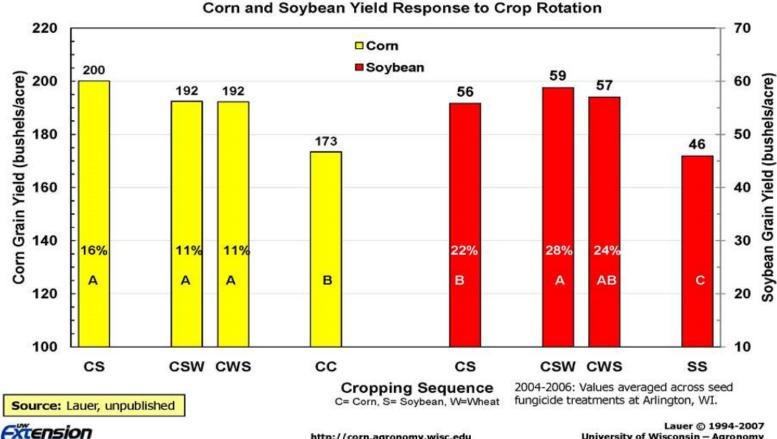
- Research conducted from 2010-2012 at the Arlington Ag Research Station
- Data collected from a long term corn/soybean/wheat rotation study


Materials and Methods

- Experimental design
 - Split-split plot RCB with 3 replications
 - Main plots = 14 crop rotation sequences
 - Subplots = 4 variety rotations: RRR, SSS, RRS, and SSR
 - Sub-subplots = 2 fungicide treatments: fungicide vs. UTC

Rot	ation		Crop
Name	Number	Sequenc	e Residue
Continous	1	Cont. C	leave
	2	Cont. S	leave
	3	Cont. W	leave
Alternating	4	CS	leave
	5	SC	leave
Grain system	6	CSW	leave
	7	SWC	leave
	8	WCS	leave
	9	CWS	leave
	10	WSC	leave
	11	SCW	leave
Livestock system [†]	12	C _s W _s S	remove (except soy)
	13	W _s c	remove (except soy)
	14	S.CW.	remove (except soy)

+ s, silage/straw removal


Impact of Rotation Sequence on Wheat Yield

Columns with the same letter are not statistically different at $P \le 0.10$

Impact of Rotation on Wheat Yield

Adding a third crop does not increase corn grain yield, but does improve soybean grain yield ...

http://corn.agronomy.wisc.edu

University of Wisconsin - Agronomy

Wheat results

	Year x Fungicide use				
	Mg ha ⁻¹				
	<u>2010</u>				
	Untreated	Jntreated 4.56 b			
	Treated		4.79 a		
Resista		LSD(0.10) = 0	.21		
Suscep		2011			
	Untreated		5.21		
	Treated		5.06		
		LSD(0.10) =	NS		
		<u>2012</u>			
	Untreated		5.51 b		
	Treated		6.03 a		
		LSD(0.10) = 0	.24		

Fixed Effect	Pr > F
Year (Y)	***
Crop rotation (C)	***
Y x C	***
Variety selection (VS)	***
Y x VS	**
— C x VS	**
Y x C x VS	NS
Fungicide use (F)	***
Y x F	***
C x F	**
Y x C x F	**
VS x F	**
Y x VS x F	NS
C x VS x F	NS

37 / 52

S

С

а

					Fixed B	Effe
	Cr	op Rotation x Fungicide Use			Year (Y)
		CSW	CWS	C _s W _s S	Crop I	rota
			Mg ha	g ⁻¹	Y x C	
	Fungicide use		2010		Variet	tv se
	Variety selection x Fungicide use					
		Resist	ant	Susceptible	Y x VS	
Untreated		4.88 c		5.31 b	C x VS	5
Treated		4.89 c		5.69 a	YxC	x VS
) = 0.18	Fungi	cide
	Treated	5.63 b	4.05 c		Y x F	
5		L	C x F			
			2012		YxC	x F
	Untreated	6.05	5.14	5.32	VS x F	:
	Treated	6.63	5.83	5.63	Y x VS	5 x F
		LSD(0.10) = NS			C x VS	L V E
					C X V 3	ЭХГ

Fixed Effect	Pr > F
Year (Y)	***
Crop rotation (C)	***
YxC	***
Variety selection (VS)	***
Y x VS	**
C x VS	**
Y x C x VS	NS
Fungicide use (F)	***
Y x F	***
C x F	**
Y x C x F	**
VS x F	**
Y x VS x F	NS
C x VS x F	NS

38 / 52

Obadgerbean

thesoyreport.blogspot.com

