Nitrogen Management for Corn Production and Water Quality

Fabián Fernández Department of Soil, Water, and Climate <u>fabiangf@umn.edu</u>

2015 Great Lakes Crop Summit 29 Jan. 2015, Mt. Pleasant, MI

UNIVERSITY OF MINNESOTA Driven to Discoversm

Nitrogen Management 101

- N is expensive: can't afford to over apply
- Corn needs N: can't afford to under apply
- N can create environmental degradation
 - Under the current regulatory climate N is being heavily scrutinized

UNIVERSITY OF MINNESOTA

- Show that this nutrient is being used very wisely
- Ensure we can keep using all tools in the toolbox

Nitrogen Management Made Easy

Apply just what the crop needs, at the best possible time using the proper application method for the nitrogen source being used

<u>Two principles</u>

UNIVERSITY OF MINNESOTA

- Enhance nitrogen uptake
- Minimize nitrogen loss

🛯 Nutrient Management

EXTENSION Driven to Discover

Nitrogen Management is Not Just Pounds of N per Acre

- Often discussions on nitrogen management revolve only around the topic of rate of application
 - -1) Adequate availability to the crop
 - 2) Minimize the amount of leftover nitrogen at the end of the season
- Other variables are also important
 - Source, time, application method, prevailing weather conditions, region/soil of the state

UNIVERSITY OF MINNESOTA

Placement

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover

- All ammonium-based fertilizers have the potential to volatilize
- Topdressed urea or ureacontaining fertilizers have the greatest potential (pH >9 develops just under granule as it hydrolyzes to ammonium carbonate)
- Most of the volatilization takes place shortly after application if not incorporated (24-48 hrs)

Nutrient Management

Volatilization

N Sources for No-till Corn Eight Site-years, 1995-98

Figure 6.25. Distribution of anhydrous ammonia (white areas) when released in different kinds of soil, at various depths, and under several soil moisture conditions.

Nutrient Management

EXTENSION Driven to Discover

Source 8 Denitrification Timing Nitrification Leaching

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover"

How Dinosaurs Became Extinct

1.2.2.5.6

Possible Actions to Improve Use Efficiency

- Stabilized nitrogen
 - Slow down conversion of urea to ammonia (urease inhibitor)
 - Slow down conversion of ammonium to nitrate (nitrification inhibitor)
- Slow release nitrogen
 - Formation of long chain N compounds
 - Methylated urea (generally expensive to produce)
- Controlled release nitrogen
 - Physical or chemical barrier to slow down solubility
 - Polymer coating around fertilizer prill (usually urea)
 - Sulfur coating around prill
- Time of application

UNIVERSITY OF MINNESOTA

Pre-Plant Application (100 lb N acre⁻¹)

Source	2007-2010	2010
	bu acr	⁻e⁻¹
AA	134a	134ab
ESN	139a	140a
Urea	137a	121b
LSD	6	13

UNIVERSITY OF MINNESOTA

N Form	Application Time	Nitrification Inhibitor	2 weeks After Appl.	4+ weeks After Appl.
			% Appl. N in	NO ₃ Form
AA	Fall	No		97
AA	Fall	Yes		60
[NH ₄] ₂ SO ₄	Fall	No		97
$[NH_4]_2SO_4$	Winter	No		95
AA	Spring	No	40	65
AA	Spring	Yes	25	50
Urea	Spring	No	50	75
UAN sol.	Spring	No	60	80
[NH ₄] ₂ SO ₄	Spring	No	50	75

Nutrient Management

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover¹⁵

Temperature and Soil Affects Nitrapyrin Persistence Cooler Temperatures Reduce 1) Bacterial Activity

and 2) Nitrapyrin Breakdown

Nitrapyrin applied at 1.77 and 3.54 ppm to Drummer and 1 and 2 ppm to Cisne Touchton et al., 1979 Agron. J. 71:865-869

Effect of N rate and time of application on nitrate-N losses to subsurface drainage in continuous corn in Minnesota

Ammonium sulfate (Ib N acre ⁻¹)	Time	Annual loss of Nitrate-N in drainage (lb N acre ⁻¹ year ⁻¹)	Five-year yield average (bu acre ⁻¹)
0	0	7	66
120	Fall (Nov.1)	27	131
120	Spring (May 1)	19	150
180	Fall (Nov.1)	34	160
180	Spring (May 1)	26	168

UNIVERSITY OF MINNESOTA

Nutrient Mar (Adapted from Randall and Mulla, 2001)

Nitrate Leaching

Treatment	Corn	Soybean
	mg N	10 ₃ /L
Fall	14.3	10.3
Fall+NP	11.5	9.5
Spring	10.7	10.8
Spring+NP	11.3	11.0

•Adding NP in fall reduces nitrate in tile by 10%, but not in the spring. *Key is to have little nitrate during Apr-Jun.*

- •71% of annual subsurface drainage during Apr-Jun.
 - •54% of nitrate in drainage during corn crop (77% Apr-Jun)
 •46% of nitrate in drainage during soybean crop (73% Apr-Jun)

Parameter	Time of A	pplication	
	Fall	Fall + NServe	Spring
15-yr avg. yield (bu/a)	144	153	156
15-yr avg. economic return over fall N (\$/a/yr)		\$9.30	\$18.80
7-yr avg. yield (bu/a)	131	146	158
7-yr avg. economic return over fall N (\$/a/yr)		\$22.50	\$51.00
15-yr flow-weighted NO ₃ -N in tile (mg/L) from a corn-soybean rotation	14.1	12.2	12.0
15-yr N recovery in the grain (%)	38	46	47

9 bu/a yld increase, \$9.30 greater return, and tile drain NO_3 was reduced 14% relative to the same application without N serve

N rate was 135 lb/a (1987-1993) and 120 lb N/a for 1994-2001 Corn \$2/bu, fall N \$0.25/lb N (0.125 N:corn), spring N \$0.275/lb N, Nserve \$7.50/a 7 years where sig. difference occurred (wetter than normal springs) N recovery = (N in grain – N in grain from check) / fertilizer N rate Canisteo and associated glacial till soils. N applied at 50F or below

Nutrient Mana Adapted from Randall and Vetsch, 2005a, 2005b and Randall et al., 2003a, 2003b)

Instinct Effects, Waseca, Webster/Nicolette All pre-plant incorporated. 2008 & 10 C-S; 2009 C-C 2008 & 9 – dry years; 2010 wet year.

N Rate	Inhibitor Rate	2008	2009	2010
lb N/A	fl oz/A	bu/A		
80	0	138	178	173
80	35	141	178	181
120	0	157	196	178
120	35	159	199	191
Instinct effect		NS	NS	**
Rate effect		**	**	**
Interaction		NS	NS	NS

Randall and Vetsch, 2008-2010

Instinct trials, 11 Site-Years

Conditions when NI will not increase grain yield

- Seasons and soil types where N loss is minimal
- Seasons and soil types were N loss conditions occur after the NI has become ineffective
- When soil plus fertilizer N far exceeds crop N requirement
- When NI and NH₄⁺ become separated in the soil
- When positional availability of NH₄⁺ is a factor under dry soil conditions

UNIVERSITY OF MINNESOTA

Effectiveness of NI increases.....

- With cool soil temperatures
 - Less NI breakdown
 - Reduced recovery of nitrifiers
- With low initial soil pH
 - Reduced recovery of nitrifiers
- With low, banded N rates
 - Proximity of NI to NH₄+
 - High ionic strength reduces nitrifiers and NI decomposition

UNIVERSITY OF MINNESOTA

Factors for Leaching

1. Amount of N in NO₃⁻ form

- 1. N source can be important.
- 2. Bacteria-mediated process (Temperature and Moisture)

2. Time since urea application

- 1. Urea is highly soluble in water
- If leaching rainfall was within 2-4 days after application (time for hydrolysis to NH₄⁺) then urea may have leached
- 3. If leaching rainfall was more than 4 days after urea application NH_4^+ from urea remains within the root zone

UNIVERSITY OF MINNESOTA

Factors for Leaching

3. Amount of water and drainage (natural or created)

- In sandy or heavily tile-drained soils: nitrate moves 1' per 1" of rain
- In clay loam or silt loam soils: nitrate moves 5-6" per 1" of rain
- Upward movement with evaporation and evapotranspiration

UNIVERSITY OF MINNESOTA

Denitrification The process of nitrogen loss to the atmosphere **Starts 24 to 48** hours after flooding

Denitrification In Water-Saturated Soil Conditions

 Amount of NO₃-N (<u>not total nitrogen</u> <u>applied</u>) that will be lost via denitrification for each day that soils are saturated when soil temperatures are:

4% to 5%. 2% to 3% 1% to 2%

UNIVERSITY OF MINNESOTA

How Much N Loss From NO₃ Has Occurred After 9 Days of Saturated Conditions?

- <u>Calculate N present as nitrate</u>
 - N applied x % in nitrate form
 - 180 lb N/acre x 0.65 = 117 lb N/acre
- <u>Calculate N denitrification</u>
 - N in nitrate form x % denitrified
 - 117 x 0.27 (9 days x 0.03%/day) = 31 lb N/acre lost

UNIVERSITY OF MINNESOTA

Nutrient Management

EXTENSION Driven to Discover

Can We Use Crop Sensors To Improve N Management?

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover*

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover

Using Canopy Sensors

- The earlier the sensing the greater the flexibility to apply nitrogen, BUT
- The earlier the sensing the lesser the predictive power
- The later the sensing the greater the predictive power, BUT
- The later the sensing the lesser the flexibility to apply nitrogen and greater potential for yield loss

UNIVERSITY OF MINNESOTA

Anhydrous Ammonia Timing (2-yr study)

Lamberton, C-C

Ves loam soil

Yield at 160 lb N/acre, 2012

Take Home Message

- Let's be realistic:
- There are many tools in the toolbox but no silver bullets
- Rely on probability to determine what tool is best for the job realizing that often there are no perfect options
- Use <u>Best Management Practices</u> proven by years of unbiased research

UNIVERSITY OF MINNESOTA

Nitrogen

Minnesota's Grand Challenge & Compelling Opportunity Conference

Friday March 6, 2015

Best Western Plus Kelly Inn St. Cloud, MN 100 4th Avenue South St. Cloud, Minnesota 56301

10

http://z.umn.edu/Nconference

Registration Opens at 8:00 am

Morning Sessions 9:00 am – 12:25pm		Speaker	Organization
9:00-9:05	Welcome	Dr. Fabián Fernández	University of Minnesota
9:05-9:55	Nitrogen Market Update	Dr. Robert Mullen	Potash Corp
9:55-10:45	Climate Trends And Their Implications	Dr. Mark Seeley	University of Minnesota
10:45-11:35	Irrigated Corn N Guidelines - What Are They And Where Did They Come From?	Dr. John Lamb	University of Minnesota
11:35-12:25	Can We Protect Groundwater Supplies Beneath Our Outwash Sands?	Bruce Montgomery	Minnesota Department of Agriculture

12:25-1:15 Lunch (provided by conference)

Break	out	Sessions 1:15 pm-3:45 pm	Speaker	Organization
Breakou	t Sea	ssion 1. Predicting Nitrogen In-Season		
1:15-:	2:05	Database-Driven Guidelines To Manage Nitrogen Rate Decisions	Dr. John Sawyer	Iowa State University
2:05-2	2:55	Utility Of Sensor Technology For Making In-Season Recommendations For N	Dr. Daniel Kaiser	University of Minnesota
2:55-	3:45	Opportunities And Challenges When Applying Nitrogen In-Season	Dr. Fabián Fernández	University of Minnesota
Breakou	t Sea	ssion 2. Nitrogen Credits		
1:15-:	2:05	Manure Management To Minimize Nitrogen Loss And Improve Crop Use Efficiency	Kevan Klingberg	University of Wisconsin
2:05-	2:55	Nitrogen Management For First- And Second-Year Corn Following Alfalfa	Dr. Jeffrey Coulter	University of Minnesota
2:55-	3:45	Interseeded Cover Crops In Corn-Based Cropping Systems	Dr. Scott Wells	University of Minnesota
Breakou	t Sea	ssion 3. Nitrogen Management for Sandy Soils		
1:15-:	2:05	Nitrogen Fertilizer Use Efficiency For Corn And Its Relationship To Groundwater Quality	Dr. Richard Ferguson	University of Nebraska
2:05-	2:55	Evaluation Of Nitrogen Technologies For Sandy Soils	Dr. Carl Rosen	University of Minnesota
2:55-	3:45	Fertigation As A Management Tool In Irrigated Corn	Joshua Stamper	University of Minnesota

Thank You best wishes for the 2015 growing season

Fabián Fernández fabiangf@umn.edu

Nutrient Management

UNIVERSITY OF MINNESOTA EXTENSION Driven to Discover**