Converting Colorful Maps into Useful Info - Normalizing years of geo-referenced soil and yield data to strategize next year's management

Bruno Basso and Ryan Nagelkirk

Spatial variability is the norm rather than the exception in most fields.

The success of Precision Agriculture depends on:

- how accurate is the assessment of variability
- adequacy of inputs recommendations
- the degree of application control

Management Zones

A management zone for variable rate technology (VRT) can be defined as a sub-region of a field that expresses a near-homogeneous combination of yield limiting factors for which a single rate of a specific crop input is appropriate

Management Zones Delineation

Various authors have proposed criteria for the delineation of management zones based on:

- Topography, landscape position
- Soil Type
- Nutrient levels
- Yield
- EC
- Remote sensing and aerial photos
- Producers experiences

(Fiez et al.,1994; Ostergaard, 1997; Franzen et al., 2001; Basso et al., 2001; Johnson et al., 2003; Ferguson et al., 2004<u>;</u> Schepers et al., 2004, Chang et al., 2004; Fleming et al.,2004; Inman et al., 2005)

Precision Agriculture – 4 R

.. is the application of technologies and principles to manage spatial and temporal variability associated with all aspects of agricultural production for the purpose of improving crop performance and environmental quality.

> ...applying the <u>Right input</u> in the <u>Right amount</u> at the <u>Right time</u> in the <u>Right place</u>

> > <u> 1990 - 2015</u>

Pierre Robert

Precision Agriculture

<u>1990 vs 2015</u>

- Technology Enabled immature, limiting Within Field Variability Recognized but difficult to map Apply whole field principles to site-specific management Environmental Benefits
 - assumed *win-win*

(Photo sources F.J.Pierce)

Core Technologies Mature • New technologies Sensing variability - Null Hypothesis -**Temporal >> Spatial** Real time management Lack of SS production functions Ecosystem services are expected **Change in management** scale is required

Precision Agriculture Scales of Application

Plant ----- Landscape

Veris Soil Conductivity Map: Shallow

Veris Soil Conductivity Map: Deep

High-resolution 2-D resistivity tomography

High-resolution 2-D resistivity tomography

No Tillage

No Tillage plot right after a tillage event

Basso et al., 2010 Agron J

Stability Map

2014 Nitrogen Use Efficiency

2014 Nitrogen Fertilizer Efficiency

SALUS

(System Approach for Land Use Sustainability)

SALUS (System Approach for Land Use Sustainability)

Model validation

Legend

SALUS Simulations vs. Measured Yields

Yield 2009

Yield 2010

Yield 2011

Yield 2012

6 Years of Yields in a Single Field

Stability Map

Measured profit 2011 Green: Profit Red: Lower Profit Avg: \$740/acre

Net Profit (dollars/acre)

Measured profit 2012 Green: Profit Red: Loss Avg: \$194/acre

Net Profit (dollars/acre)

SALUS Best Nitrogen Management 2012 Green: Profit Red: Loss Avg: \$428/acres

2012, Only 30 # N/ac

Net Profit (dollars/hectare)

SALUS Irrigation 2012 Green: Profit Red: Loss Avg: \$980/acres

2012, Irrigated 200 # N/ac

Net Profit (dollars/hectare)

0 0.1 Miles

Field Topography

×

140.134.48.19/salus/SalusSI_EN/index.html

The System Approach to Environmental Sustainability

Welcome to the SALUS model-simple interface. SALUS is a computer simulation crop model designed to improve crop production and reduce environmental impact. In this web page users by answering a set of simple questions (i.e. soil type, planting details, fertilizer, irrigation, etc.) can simulate the effect of a management strategy on crop yield, nitrate leaching and carbon sequestration.

Hello Joshua~ logout

In this screen you can enter soil and weather input

Specify management strategies

Hello Joshua~ logout

Field Name Maize01

10/10 View Input

Results of 6 years	Best Year	Average Year	Worse Year	Total for 6 years
Yield (kg/ha)	18522	14947	11658	
Nitrate leaching (annual) (kg/ha)	0	0.43	2.56	2.56
Nitrogen in the soil at Harvest (kg/ha)	43.08	78.69	116.46	
Nitrogen Use Efficiency (Yield/ N)	1234	996	777	
N2O emissions (kg/ha)	1.75	1.76	1.77	10.55
CO2 emissions annual (kg/ha)	2932.52	7331.18	9653.07	43987.07
Soil carbon change (%)				-0.06
Water Use Efficiency (kg/mm)	40	31.51	25.37	
Water Stress Index	17	11.83	5	
Drainage (mm)	221.46	82.21	0	
Soil Evaporation (mm)	296.65	454.37	535	2726.2
Plant Transpiration (mm)	262.5	218.45	180.82	1310.72
Soil water content at Harvest (mm)	221.46	82.21	0	

Try Again

Compare Outputs

Simulation results and AMSI index

Homogeneous zones

High Yield Zone

Medium Yield Zone

Low Yield Zone

Strategic and tactical N management using spatially explicit crop modeling

Dual criteria optimization through tested model determines the N rate that minimizes nitrate leaching and increases net revenues for farmers

(Basso et al., 2011; Eur J. Agron 35:215-2

Observed Variable Rate Nitrogen

Variable rate nitrogen rates were selected using SALUS model after evaluating the N response for each of the N rate in each zone for 30 years of available weather

Reducing Greenhouse Gas Emissions

Basso et al., 2012

Precision agricultural management as adaptation and mitigation strategies

Precision Agriculture Strategies reduce risks and allows the stabilization of ecosystems services for the following reasons:

•Gains in energy efficiency for farm operations that consume fuel, including mechanical operation such tillage, irrigation, fertilization etc..

• Gains in production or yield efficiency for grain, and other agricultural products

• Abetment of the GHC emission (N₂O) by better fertilizer use

The proper simulation of the water entering the soil and the amount available to crops allow to estimate the right amount of N fertilizer and irrigation (if available) to apply in the most efficient and sustainable way.

It will help farmers manage their variability and quantify the effects of management practices, genetics, soil and weather on yield, and support decisions related to crop management strategies for optimizing profitability and increase resource use